We consider a theory of quantum thermodynamics with multiple conserved quantities (or charges). To this end, we generalize the seminal results of Sparaciari et al. [PRA 96:052112, 2017] to the case of multiple, in general non-commuting charges, for which we formulate a resource theory of thermodynamics of asymptotically many non-interacting systems. To every state we associate the vector of its expected charge values and its entropy, forming the phase diagram of the system. Our fundamental result is the Asymptotic Equivalence Theorem (AET), which allows us to identify the equivalence classes of states under asymptotic approximately charge-conserving unitaries with the points of the phase diagram. Using the phase diagram of a system and its bath, we analyze the first and the second laws of thermodynamics. In particular, we show that to attain the second law, an asymptotically large bath is necessary. In the case that the bath is composed of several identical copies of the same elementary bath, we quantify exactly how large the bath has to be to permit a specified work transformation of a given system, in terms of the number of copies of the elementary bath systems per work system (bath rate). If the bath is relatively small, we show that the analysis requires an extended phase diagram exhibiting negative entropies. This corresponds to the purely quantum effect that at the end of the process, system and bath are entangled, thus permitting classically impossible transformations. For a large bath, system and bath may be left uncorrelated and we show that the optimal bath rate, as a function of how tightly the second law is attained, can be expressed in terms of the heat capacity of the bath. Our approach, solves a problem from earlier investigations about how to store the different charges under optimal work extraction protocols in physically separate batteries.


翻译:我们把量子热力学理论与多节制数量(或电量)联系起来。为此,我们将Sparaciari等人[PRA 96:052112,2017年]的创性结果推广到多个(一般非通融性)电荷,为此,我们用一个系统及其浴室的阶段图来分析热力学的资源理论。我们对每一个州都将其预期电荷值的矢量及其增温性联系起来,形成系统的阶段图。我们的基本结果是AET(AET),这使我们得以将Sparaciari et al.[PRA 96:052112,2017年]的创性结果推广到多个(PRA96:05:05211212,2017年 )的创性电荷。为此,我们用一个系统不设充充电量的直线性电动理论,我们分析了热力动力系统的第一和第二定律。特别是,为了达到第二定律, 需要从负式大的洗, 最优的洗方法是由几个不相像的基浴,我们量化的平底的系统, 我们用最短的电算的电算法分析, 使浴法的电压系统能够让一个更深的电压的电流的电压的电算法的电压的电压的电压的电压的电算。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
斯坦福2020硬课《分布式算法与优化》
专知会员服务
118+阅读 · 2020年5月6日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年1月15日
Random and quasi-random designs in group testing
Arxiv
0+阅读 · 2021年1月15日
Design and Analysis of Switchback Experiments
Arxiv
0+阅读 · 2021年1月14日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员