Dealing with missing values and incomplete time series is a labor-intensive, tedious, inevitable task when handling data coming from real-world applications. Effective spatio-temporal representations would allow imputation methods to reconstruct missing temporal data by exploiting information coming from sensors at different locations. However, standard methods fall short in capturing the nonlinear time and space dependencies existing within networks of interconnected sensors and do not take full advantage of the available - and often strong - relational information. Notably, most state-of-the-art imputation methods based on deep learning do not explicitly model relational aspects and, in any case, do not exploit processing frameworks able to adequately represent structured spatio-temporal data. Conversely, graph neural networks have recently surged in popularity as both expressive and scalable tools for processing sequential data with relational inductive biases. In this work, we present the first assessment of graph neural networks in the context of multivariate time series imputation. In particular, we introduce a novel graph neural network architecture, named GRIN, which aims at reconstructing missing data in the different channels of a multivariate time series by learning spatio-temporal representations through message passing. Empirical results show that our model outperforms state-of-the-art methods in the imputation task on relevant real-world benchmarks with mean absolute error improvements often higher than 20%.
翻译:处理缺失的值值和不完全的时间序列是处理来自现实世界应用的数据的劳动密集型、乏味和不可避免的任务。有效的时空表达方式将允许通过利用不同地点的传感器所提供的信息来进行估算,以重建缺失的时间数据。然而,标准方法在捕捉相互关联的传感器网络中存在的非线性时间和空间依赖性方面不尽如人意,并且没有充分利用现有――而且往往是强有力的――关联信息。值得注意的是,大多数基于深层次学习的先进估算方法并不明确地模拟关系方面,而且无论如何,也不利用能够充分代表结构化的时空数据的处理框架。相反,图表神经网络最近作为表态和可扩展工具,在利用关系感动偏差偏差的传感器网络中获取非线性时间和空间依赖性数据,因此无法充分利用现有――而且往往十分强大的关系信息。在多变时间序列估算中,我们首次对图形神经网络进行了评估。特别是,我们引入了新型的图形神经网络架构,名为GRIN,其目标往往是在构建高端数据时空结构中,目的是在不同的轨道上重建缺失数据,通过流式的超时空结构结构,展示了我们绝对时间序列的结果,通过流分析结果显示,从而展示了相关的平局性结果。