Most current anthropomorphic robotic hands can realize part of the human hand functions, particularly for object grasping. However, due to the complexity of the human hand, few current designs target at daily object manipulations, even for simple actions like rotating a pen. To tackle this problem, we introduce a gesture based framework, which adopts the widely-used 33 grasping gestures of Feix as the bases for hand design and implementation of manipulation. In the proposed framework, we first measure the motion ranges of human fingers for each gesture, and based on the results, we propose a simple yet dexterous robotic hand design with 13 degrees of actuation. Furthermore, we adopt a frame interpolation based method, in which we consider the base gestures as the key frames to represent a manipulation task, and use the simple linear interpolation strategy to accomplish the manipulation. To demonstrate the effectiveness of our framework, we define a three-level benchmark, which includes not only 62 test gestures from previous research, but also multiple complex and continuous actions. Experimental results on this benchmark validate the dexterity of the proposed design and our video is available in \url{https://drive.google.com/file/d/1wPtkd2P0zolYSBW7_3tVMUHrZEeXLXgD/view?usp=sharing}.


翻译:目前大多数人类变形机器人手可以实现人体手功能的一部分功能,特别是物体捕捉功能。 但是,由于人类手的复杂程度,日常物体操纵,甚至旋转笔等简单动作,目前设计的目标很少。 为了解决这个问题,我们引入了一个基于手势的框架,将广泛使用的33个Feix握手手势作为手式设计和实施操作的基础。在拟议框架中,我们首先测量每个动作的人体手指运动范围,并根据结果,我们提议一个简单但灵活的机器人手设计,带有13度动作。此外,我们采用了基于框架的内插法,我们把基本手势视为代表操纵任务的关键框架,并使用简单的线性内插战略完成操纵。为了展示我们框架的有效性,我们确定了一个三级基准,其中不仅包括以往研究的62个测试手势,而且还包括多重复杂和连续的行动。这个基准的实验结果验证了拟议设计的外延性,我们的视频可以在\DP2/Prgrv_SBSBA/DMU_MUMUG_MUGR=NVGR_MUGR_MU_MUGO_MUGO_MUGO_ZGRGRGRQ_X_X_XGO_ZGRVGO_X_BYGO_Z_ZGRGO_BYGO}xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
【CVPR2021】基于Transformer的视频分割领域
专知会员服务
36+阅读 · 2021年4月16日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
RL解决'LunarLander-v2' (SOTA)
CreateAMind
62+阅读 · 2019年9月27日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年5月28日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
5+阅读 · 2018年5月22日
VIP会员
相关VIP内容
相关资讯
RL解决'LunarLander-v2' (SOTA)
CreateAMind
62+阅读 · 2019年9月27日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
机器人开发库软件大列表
专知
10+阅读 · 2018年3月18日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
carla 体验效果 及代码
CreateAMind
7+阅读 · 2018年2月3日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员