Visually exploring the world around us is not a passive process. Instead, we actively explore the world and acquire visual information over time. Here, we present a new model for simulating human eye-movement behavior in dynamic real-world scenes. We model this active scene exploration as a sequential decision making process. We adapt the popular drift-diffusion model (DDM) for perceptual decision making and extend it towards multiple options, defined by objects present in the scene. For each possible choice, the model integrates evidence over time and a decision (saccadic eye movement) is triggered as soon as evidence crosses a decision threshold. Drawing this explicit connection between decision making and object-based scene perception is highly relevant in the context of active viewing, where decisions are made continuously while interacting with an external environment. We validate our model with a carefully designed ablation study and explore influences of our model parameters. A comparison on the VidCom dataset supports the plausibility of the proposed approach.
翻译:视觉探索我们周围的世界并不是一个被动的过程。 相反, 我们积极探索世界 并获得视觉信息。 在这里, 我们展示了一个新的模型, 在动态现实世界的场景中模拟人类眼动行为。 我们将这种积极的场景探索模型建为顺序决策程序。 我们将流行的漂移扩散模型( DDM) 用于感知性决策, 并将其推广到由场景中的物体定义的多个选项。 对于每一种可能的选项, 模型会整合一段时间内的证据, 并且一旦证据跨过决定门槛, 就会触发一个决定( 百分数眼运动) 。 在活跃的观景中, 决策与基于对象的场景感知之间的这种明确联系具有高度相关性, 在与外部环境互动时, 决策是连续的。 我们用精心设计的减缩研究来验证我们的模型, 并探索模型参数的影响。 对 VidComet 数据集的比较支持拟议方法的可信度 。