In computer vision, it is standard practice to draw a single sample from the data augmentation procedure for each unique image in the mini-batch, however it is not clear whether this choice is optimal for generalization. In this work, we provide a detailed empirical evaluation of how the number of augmentation samples per unique image influences performance on held out data. Remarkably, we find that drawing multiple samples per image consistently enhances the test accuracy achieved for both small and large batch training, despite reducing the number of unique training examples in each mini-batch. This benefit arises even when different augmentation multiplicities perform the same number of parameter updates and gradient evaluations. Our results suggest that, although the variance in the gradient estimate arising from subsampling the dataset has an implicit regularization benefit, the variance which arises from the data augmentation process harms test accuracy. By applying augmentation multiplicity to the recently proposed NFNet model family, we achieve a new ImageNet state of the art of 86.8$\%$ top-1 w/o extra data.
翻译:在计算机视野中,标准的做法是从数据增强程序中为微型批量中的每个独特图像抽取单一样本,但不清楚这一选择是否最适于概括化。在这项工作中,我们对每个独特图像的增益样本数量如何影响悬浮数据的性能提供了详细的实证评估。值得注意的是,我们发现,每个图像抽取多个样本始终提高小批量和大批量培训的测试准确性,尽管每批小型批量中的独特培训实例数量有所减少。即使不同的增益多利度进行相同数量的参数更新和梯度评估,也会产生这种效益。我们的结果表明,尽管子抽样数据集的梯度估计差异具有隐含的正规化效益,但数据增强过程产生的差异损害了测试准确性。我们通过对最近提议的NFNet模型组合应用增益多重性,实现了新的图像网状态,即原始数据为86.8$+++++++++++++++++++数据。