This paper introduces an end-to-end learned image compression system, termed ANFIC, based on Augmented Normalizing Flows (ANF). ANF is a new type of flow model, which stacks multiple variational autoencoders (VAE) for greater model expressiveness. The VAE-based image compression has gone mainstream, showing promising compression performance. Our work presents the first attempt to leverage VAE-based compression in a flow-based framework. ANFIC advances further compression efficiency by stacking and extending hierarchically multiple VAE's. The invertibility of ANF, together with our training strategies, enables ANFIC to support a wide range of quality levels without changing the encoding and decoding networks. Extensive experimental results show that in terms of PSNR-RGB, ANFIC performs comparably to or better than the state-of-the-art learned image compression. Moreover, it performs close to VVC intra coding, from low-rate compression up to nearly-lossless compression. In particular, ANFIC achieves the state-of-the-art performance, when extended with conditional convolution for variable rate compression with a single model.


翻译:本文介绍了一个端到端学习的图像压缩系统,称为ANICF, 其基础是增强的正常流动。 ANFF是一种新型流动模型,它堆叠了多种变异自动电解器(VAE),以获得更大的模型显示。 基于 VAE 的图像压缩已经纳入主流, 显示有希望的压缩性能。 我们的工作首次尝试在流动框架内利用VAE 的压缩。 ANICF通过堆叠和扩展等级上的多VAE, 进一步提高压缩效率。 ANF的可视性, 加上我们的培训战略, 使得ANFI能够在不改变编码和解码网络的情况下支持范围广泛的质量水平。 广泛的实验结果显示, PSNR- RGB, ANICC 在PSNR- RGB 方面, 其表现与最先进的、 最先进的、 最先进的图像压缩标准相比或更好。 此外, ANICFIC还表现接近VC 内部编码, 从低速压缩到几乎无损失的压缩。 特别是, ANIC 实现了最高级的状态性表现,, 当与单一的压压压缩率的公式扩展时, 。

0
下载
关闭预览

相关内容

专知会员服务
27+阅读 · 2021年7月11日
专知会员服务
56+阅读 · 2021年5月17日
最新【深度生成模型】Deep Generative Models,104页ppt
专知会员服务
70+阅读 · 2020年10月24日
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
87+阅读 · 2020年5月11日
专知会员服务
61+阅读 · 2020年3月19日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2017年11月22日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年9月20日
Arxiv
4+阅读 · 2019年11月21日
Arxiv
5+阅读 · 2017年11月13日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
5+阅读 · 2017年11月22日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员