Large language models (LLM) have been successful in several natural language understanding tasks and could be relevant for natural language processing (NLP)-based mental health application research. In this work, we report the performance of LLM-based ChatGPT (with gpt-3.5-turbo backend) in three text-based mental health classification tasks: stress detection (2-class classification), depression detection (2-class classification), and suicidality detection (5-class classification). We obtained annotated social media posts for the three classification tasks from public datasets. Then ChatGPT API classified the social media posts with an input prompt for classification. We obtained F1 scores of 0.73, 0.86, and 0.37 for stress detection, depression detection, and suicidality detection, respectively. A baseline model that always predicted the dominant class resulted in F1 scores of 0.35, 0.60, and 0.19. The zero-shot classification accuracy obtained with ChatGPT indicates a potential use of language models for mental health classification tasks.


翻译:大型语言模型(LLM)在多种自然语言理解任务方面取得了成功,并且可能与基于NLP的精神健康应用研究相关。本研究报告了基于LLM的ChatGPT(使用gpt-3.5-turbo后端)在三个基于文本的精神健康分类任务中的表现:压力检测(2类分类)、抑郁症检测(2类分类)和自杀倾向检测(5类分类)。我们从公共数据集中获取了三个分类任务的注释社交媒体帖子。然后,使用ChatGPT API并添加分类的输入提示对社交媒体帖子进行分类。我们在压力检测、抑郁症检测和自杀倾向检测方面分别获得了0.73、0.86和0.37的F1分数。总是预测主导类别的基准模型的F1分数分别为0.35、0.60和0.19。ChatGPT获得的零样本分类准确性表明了语言模型在精神健康分类任务中的潜在用途。

1
下载
关闭预览

相关内容

ChatGPT(全名:Chat Generative Pre-trained Transformer),美国OpenAI 研发的聊天机器人程序 [1] ,于2022年11月30日发布 。ChatGPT是人工智能技术驱动的自然语言处理工具,它能够通过学习和理解人类的语言来进行对话,还能根据聊天的上下文进行互动,真正像人类一样来聊天交流,甚至能完成撰写邮件、视频脚本、文案、翻译、代码,写论文任务。 [1] https://openai.com/blog/chatgpt/
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
专知会员服务
123+阅读 · 2020年9月8日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月19日
Arxiv
0+阅读 · 2023年5月17日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
VIP会员
相关VIP内容
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员