In ObjectNav, agents must locate specific objects within unseen environments, requiring effective perception, prediction, localization and planning capabilities. This study finds that state-of-the-art embodied AI agents compete for higher navigation quality, but often compromise the computational efficiency. To address this issue, we introduce "Skip-SCAR," an optimization framework that builds computationally and memory-efficient embodied AI agents to accomplish high-quality visual navigation tasks. Skip-SCAR opportunistically skips the redundant step computations during semantic segmentation and local re-planning without hurting the navigation quality. Skip-SCAR also adopts a novel hybrid sparse and dense network for object prediction, optimizing both the computation and memory footprint. Tested on the HM3D ObjectNav datasets and real-world physical hardware systems, Skip-SCAR not only minimizes hardware resources but also sets new performance benchmarks, demonstrating the benefits of optimizing both navigation quality and computational efficiency for robotics.
翻译:暂无翻译