For tracking and motion capture (MoCap) of animals in their natural habitat, a formation of safe and silent aerial platforms, such as airships with on-board cameras, is well suited. In our prior work we derived formation properties for optimal MoCap, which include maintaining constant angular separation between observers w.r.t. the subject, threshold distance to it and keeping it centered in the camera view. Unlike multi-rotors, airships have non-holonomic constrains and are affected by ambient wind. Their orientation and flight direction are also tightly coupled. Therefore a control scheme for multicopters that assumes independence of motion direction and orientation is not applicable. In this paper, we address this problem by first exploiting a periodic relationship between the airspeed of an airship and its distance to the subject. We use it to derive analytical and numeric solutions that satisfy the formation properties for optimal MoCap. Based on this, we develop an MPC-based formation controller. We perform theoretical analysis of our solution, boundary conditions of its applicability, extensive simulation experiments and a real world demonstration of our control method with an unmanned airship. Open source code https://tinyurl.com/AsMPCCode and a video of our method is provided at https://tinyurl.com/AsMPCVid .


翻译:在自然环境中追踪和动作捕获动物的过程中,使用一组安全、静音的空中平台(如带有摄像头的空艇)进行协同是非常适合的。在我们以前的工作中,我们导出了用于最优动作捕捉的编队属性,其中包括相对于目标物的保持固定的角度分离、与其的阈值距离和保持其在相机视野中心。与多旋翼不同,空艇具有非完整约束性,并受到环境风的影响。它们的方向和飞行方向也紧密耦合。因此,假定多旋翼的运动方向和方向无关的控制方案不适用于空艇。在本文中,我们通过首先利用空艇的空速与其与目标物距离之间的周期关系来解决这个问题。我们使用它导出了满足最优动作捕捉编队属性的解析和数值解。基于此,我们开发了一个基于MPC的编队控制器。我们对我们的解决方案进行了理论分析、适用性的边界条件、广泛的模拟实验和一个使用无人空艇实现我们控制方法的实际演示。开源代码 https://tinyurl.com/AsMPCCode 以及我们的方法视频在 https://tinyurl.com/AsMPCVid 提供。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2020年12月10日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
57+阅读 · 2019年7月31日
VIP会员
相关VIP内容
相关资讯
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员