It is well known that the performance of any classification model is effective if the dataset used for the training process and the test process satisfy some specific requirements. In other words, the more the dataset size is large, balanced, and representative, the more one can trust the proposed model's effectiveness and, consequently, the obtained results. Unfortunately, large-size anonymous datasets are generally not publicly available in biomedical applications, especially those dealing with pathological human face images. This concern makes using deep-learning-based approaches challenging to deploy and difficult to reproduce or verify some published results. In this paper, we suggest an efficient method to generate a realistic anonymous synthetic dataset of human faces with the attributes of acne disorders corresponding to three levels of severity (i.e. Mild, Moderate and Severe). Therefore, a specific hierarchy StyleGAN-based algorithm trained at distinct levels is considered. To evaluate the performance of the proposed scheme, we consider a CNN-based classification system, trained using the generated synthetic acneic face images and tested using authentic face images. Consequently, we show that an accuracy of 97,6\% is achieved using InceptionResNetv2. As a result, this work allows the scientific community to employ the generated synthetic dataset for any data processing application without restrictions on legal or ethical concerns. Moreover, this approach can also be extended to other applications requiring the generation of synthetic medical images. We can make the code and the generated dataset accessible for the scientific community.
翻译:众所周知,如果用于培训过程和测试过程的数据集满足某些具体要求,那么任何分类模型的性能都是有效的。换句话说,如果用于培训过程和测试过程的数据集满足某些具体要求,那么数据集的大小越大、平衡和具有代表性,人们就越能相信拟议的模型的有效性,并因此获得结果。不幸的是,在生物医学应用中,特别是在处理病理人类面貌图像的应用中,通常没有公开提供大型匿名数据集。这种关切使得使用深层次的基于深层次学习的方法难以部署和难以复制或核实一些已公布的结果。因此,我们在本文件中建议一种高效的方法,以产生现实的匿名人类面部的合成数据集,具有相当于三种严重程度(即Mild、Modrate和Streal)的丙烷失调特征。因此,考虑在不同的级别上培训一个特定的等级StylegGAN的算法。为了评估拟议办法的性能,我们考虑一个基于CNN的分类系统,在使用所生成的合成表面图像进行训练,并使用真实的科学图像进行测试。因此,我们表明,使用 IncepionResnet Net 和合成合成图像实现97,6 ⁇ 的准确性人类面的人类面的人类面的合成数据集组群落的合成数据集 。 也使得这一数据能够产生其他数据的生成结果。