Inspired by frame-based methods, state-of-the-art event-based optical flow networks rely on the explicit computation of correlation volumes, which are expensive to compute and store on systems with limited processing budget and memory. To this end, we introduce IDNet (Iterative Deblurring Network), a lightweight yet well-performing event-based optical flow network without using correlation volumes. IDNet leverages the unique spatiotemporally continuous nature of event streams to propose an alternative way of implicitly capturing correlation through iterative refinement and motion deblurring. Our network does not compute correlation volumes but rather utilizes a recurrent network to maximize the spatiotemporal correlation of events iteratively. We further propose two iterative update schemes: "ID" which iterates over the same batch of events, and "TID" which iterates over time with streaming events in an online fashion. Benchmark results show the former "ID" scheme can reach close to state-of-the-art performance with 33% of savings in compute and 90% in memory footprint, while the latter "TID" scheme is even more efficient promising 83% of compute savings and 15 times less latency at the cost of 18% of performance drop.
翻译:在基于框架的方法的启发下,以事件为基础的最新光学流网络依赖于对相关量的清晰计算,这些量对于计算和储存在有限的处理预算和内存有限的系统来说是昂贵的。 为此,我们引入了IDNet(动态Deblurring网络),这是一个轻量但业绩良好的光学流网络,而没有使用相关量。IDNet利用事件流独特的零星连续性质,提出一种通过迭接完善和运动拆解来隐性地获取关联的替代方法。我们的网络不计算相关量,而是利用一个经常性网络来尽量扩大事件间歇性相关性。我们进一步提出两个迭代更新计划:“ID”计划,用于同一系列事件的“ID”和“TID”计划,在不使用相关量的情况下随着时间的流动事件在网上循环。基准结果显示,以前的“ID”计划可以接近于最先进的业绩,在计算中节省33%,记忆足迹上节省90%,而后一个“TIDD”计划则更高效地保证了18 %的递减成本和15倍的8 %。