We address brittle fracture in anisotropic materials featuring two-fold and four-fold symmetric fracture toughness. For these two classes, we develop two variational phase-field models based on the family of regularizations proposed by Focardi (Focardi, M. On the variational approximation of free-discontinuity problems in the vectorial case. Math. Models Methods App. Sci., 11:663{684, 2001), for which Gamma-convergence results hold. Since both models are of second order, as opposed to the previously available fourth-order models for four-fold symmetric fracture toughness, they do not require basis functions of C1-continuity nor mixed variational principles for finite element discretization. For the four-fold symmetric formulation we show that the standard quadratic degradation function is unsuitable and devise a procedure to derive a suitable one. The performance of the new models is assessed via several numerical examples that simulate anisotropic fracture under anti-plane shear loading. For both formulations at fixed displacements (i.e. within an alternate minimization procedure), we also provide some existence and uniqueness results for the phase-field solution.
翻译:我们根据Focardi(Focardi, M. 关于病媒案例自由分解问题的变差近似值, 数学, 模型方法App. Sci., 11: 663{ 684, 2001)提出的整形材料骨折,具有双倍和四倍对称断裂强度,我们根据Focardi(Focardi, M. 关于病媒案例中自由分解问题的异差近似值, 数学, 模型App. Sci., 11: 663{ 684, 2001) 提议的整形材料,处理这些材料的骨折。由于这两种模型是二阶,而不是以前四倍对称断裂强度的四级模型,因此,我们开发了两种不同的分级模型,这些模型不需要C1- 连续性基本功能,也不需要有限元素分解的混合变异异性原理。对于四重配方配方来说,我们表明标准二次降解降解功能不合适,并设计出一个合适的程序。新模型的性能是通过几个数字例子来评估,用来模拟反平板装载下的异位断裂现象的模拟。对于固定置(i. rostalstaldestreption) preptionalstalstalsttion-sttionstalsttionsttionstalstalstalsteptionstalptionalptional) imptionalptionalptionalpalptionalpalpalpalpalpalpalpalpalpalption(ical) estal) res,也提供了某些配制制成结果。