We address brittle fracture in anisotropic materials featuring two-fold and four-fold symmetric fracture toughness. For these two classes, we develop two variational phase-field models based on the family of regularizations proposed by Focardi (Focardi, M. On the variational approximation of free-discontinuity problems in the vectorial case. Math. Models Methods App. Sci., 11:663{684, 2001), for which Gamma-convergence results hold. Since both models are of second order, as opposed to the previously available fourth-order models for four-fold symmetric fracture toughness, they do not require basis functions of C1-continuity nor mixed variational principles for finite element discretization. For the four-fold symmetric formulation we show that the standard quadratic degradation function is unsuitable and devise a procedure to derive a suitable one. The performance of the new models is assessed via several numerical examples that simulate anisotropic fracture under anti-plane shear loading. For both formulations at fixed displacements (i.e. within an alternate minimization procedure), we also provide some existence and uniqueness results for the phase-field solution.


翻译:我们根据Focardi(Focardi, M. 关于病媒案例自由分解问题的变差近似值, 数学, 模型方法App. Sci., 11: 663{ 684, 2001)提出的整形材料骨折,具有双倍和四倍对称断裂强度,我们根据Focardi(Focardi, M. 关于病媒案例中自由分解问题的异差近似值, 数学, 模型App. Sci., 11: 663{ 684, 2001) 提议的整形材料,处理这些材料的骨折。由于这两种模型是二阶,而不是以前四倍对称断裂强度的四级模型,因此,我们开发了两种不同的分级模型,这些模型不需要C1- 连续性基本功能,也不需要有限元素分解的混合变异异性原理。对于四重配方配方来说,我们表明标准二次降解降解功能不合适,并设计出一个合适的程序。新模型的性能是通过几个数字例子来评估,用来模拟反平板装载下的异位断裂现象的模拟。对于固定置(i. rostalstaldestreption) preptionalstalstalsttion-sttionstalsttionsttionstalstalstalsteptionstalptionalptional) imptionalptionalptionalpalptionalpalpalpalpalpalpalpalpalpalption(ical) estal) res,也提供了某些配制制成结果。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【IJCAI2020】TransOMCS: 从语言图谱到常识图谱
专知会员服务
34+阅读 · 2020年5月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年9月24日
Arxiv
0+阅读 · 2021年9月24日
Arxiv
0+阅读 · 2021年9月24日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员