We discuss the recent developments of projection-based model order reduction (MOR) techniques targeting Hamiltonian problems. Hamilton's principle completely characterizes many high-dimensional models in mathematical physics, resulting in rich geometric structures, with examples in fluid dynamics, quantum mechanics, optical systems, and epidemiological models. MOR reduces the computational burden associated with the approximation of complex systems by introducing low-dimensional surrogate models, enabling efficient multi-query numerical simulations. However, standard reduction approaches do not guarantee the conservation of the delicate dynamics of Hamiltonian problems, resulting in reduced models plagued by instability or accuracy loss over time. By approaching the reduction process from the geometric perspective of symplectic manifolds, the resulting reduced models inherit stability and conservation properties of the high-dimensional formulations. We first introduce the general principles of symplectic geometry, including symplectic vector spaces, Darboux' theorem, and Hamiltonian vector fields. These notions are then used as a starting point to develop different structure-preserving reduced basis (RB) algorithms, including SVD-based approaches and greedy techniques. We conclude the review by addressing the reduction of problems that are not linearly reducible or in a non-canonical Hamiltonian form.


翻译:我们讨论了针对汉密尔顿问题的基于预测的减少模式(MOR)技术的最新发展情况。汉密尔顿原则完全体现了数学物理学中许多高维模型的特点,从而产生了丰富的几何结构,其中包括流体动力学、量子力学、光学系统和流行病学模型等实例。摩尔通过采用低维代谢模型,使高效的多孔数字模拟,减少了与复杂系统近似有关的计算负担。然而,标准减少方法并不能保证保持汉密尔顿问题微妙的动态,导致长期受不稳定或准确性损失困扰的模型减少。通过从交错方体几何角度接近减少模型的过程,由此导致的减少模型继承了高维度配方的稳定性和保存特性。我们首先引入了随机性地理测量的一般原则,包括静态矢量空间、Darbuux的方位和汉密尔顿矢量场。然后,这些概念被用来作为起点,发展不同的结构-保留降低基算法(RB),包括基于SVD的方法和贪婪的计算法。我们通过研究方式结束这一审查,通过解决不线性形式的减少问题。

0
下载
关闭预览

相关内容

ICML 2021论文收录
专知会员服务
122+阅读 · 2021年5月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Nature 一周论文导读 | 2019 年 8 月 8 日
科研圈
6+阅读 · 2019年8月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Nature 一周论文导读 | 2019 年 4 月 4 日
科研圈
7+阅读 · 2019年4月14日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年11月16日
Arxiv
0+阅读 · 2021年11月15日
VIP会员
相关VIP内容
相关资讯
Nature 一周论文导读 | 2019 年 8 月 8 日
科研圈
6+阅读 · 2019年8月18日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Nature 一周论文导读 | 2019 年 4 月 4 日
科研圈
7+阅读 · 2019年4月14日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员