We introduce a method to numerically compute equilibrium measures for problems with attractive-repulsive power law kernels of the form $K(x-y) = \frac{|x-y|^\alpha}{\alpha}-\frac{|x-y|^\beta}{\beta}$ using recursively generated banded and approximately banded operators acting on expansions in ultraspherical polynomial bases. The proposed method reduces what is naively a difficult to approach optimization problem over a measure space to a straightforward optimization problem over one or two variables fixing the support of the equilibrium measure. The structure and rapid convergence properties of the obtained operators results in high computational efficiency in the individual optimization steps. We discuss stability and convergence of the method under a Tikhonov regularization and use an implementation to showcase comparisons with analytically known solutions as well as discrete particle simulations. Finally, we numerically explore open questions with respect to existence and uniqueness of equilibrium measures as well as gap forming behaviour in parameter ranges of interest for power law kernels, where the support of the equilibrium measure splits into two intervals.


翻译:我们引入了一种方法,对以美元(x-y) =\\frac ⁇ x-yäpha-alpha-alpha}-\frac ⁇ x-y ⁇ beta-beta}(美元)为形式的有吸引力的修复动力法内核的问题进行数值均衡计量,使用循环生成的带宽操作器和大约带宽操作器对超球多元基的扩展采取行动。拟议方法将一个测量空间的优化问题到一个或两个变量对平衡措施的支持产生直接的优化问题,从而在数量上减少一个天真的困难。获得的操作器的结构和快速趋同特性使得单个优化步骤的计算效率很高。我们讨论了在Tikhonov正规化下方法的稳定性和趋同性,并使用一种实施方法展示与分析性已知的解决方案以及离子模拟的比较。最后,我们从数字上探索了平衡措施的存在和独特性方面的开放问题,以及在对法律内核子的参数范围形成差距,而平衡措施的支持分成了两个间隔。

0
下载
关闭预览

相关内容

【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
28+阅读 · 2021年7月16日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年10月25日
Arxiv
0+阅读 · 2021年10月25日
Arxiv
0+阅读 · 2021年10月22日
Arxiv
0+阅读 · 2021年10月21日
Arxiv
6+阅读 · 2018年10月3日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员