Benford's Law (BL) or the Significant Digit Law defines the probability distribution of the first digit of numerical values in a data sample. This Law is observed in many naturally occurring datasets. It can be seen as a measure of naturalness of a given distribution and finds its application in areas like anomaly and fraud detection. In this work, we address the following question: Is the distribution of the Neural Network parameters related to the network's generalization capability? To that end, we first define a metric, MLH (Model Enthalpy), that measures the closeness of a set of numbers to Benford's Law and we show empirically that it is a strong predictor of Validation Accuracy. Second, we use MLH as an alternative to Validation Accuracy for Early Stopping, removing the need for a Validation set. We provide experimental evidence that even if the optimal size of the validation set is known before-hand, the peak test accuracy attained is lower than not using a validation set at all. Finally, we investigate the connection of BL to Free Energy Principle and First Law of Thermodynamics, showing that MLH is a component of the internal energy of the learning system and optimization as an analogy to minimizing the total energy to attain equilibrium.
翻译:Benford 法律 (BL) 或 重要数字法 定义了数据样本中数字值首位数的概率分布。 这部法律在许多自然发生的数据集中得到遵守。 它可以被视为一个特定分布的自然性度的量度, 并发现其在异常和欺诈检测等领域的应用。 在这项工作中, 我们处理以下问题: 神经网络参数的分布是否与网络的概括能力相关? 为此, 我们首先定义一个衡量标准 MLH (Mdel Enthalpy), 以测量一组数字与 Benford 法律的接近程度, 我们从经验上显示它是一个验证准确性很强的预测器。 其次, 我们使用 MLH 来替代早期停止的校准准确性, 消除对校准集的需要。 我们提供实验性证据表明, 即使先知道校准集的最佳规模, 所达到的峰值测试精度也低于完全没有使用校准集。 最后, 我们调查了 BLL 与自由能源原则的联系, 以及 TheL 法律第一定律的校准性准确性, 将MLH 学习整个 的能源优化 至 。