We develop a Bayesian spatio-temporal model to study pre-industrial grain market integration during the Finnish famine of the 1860s. Our model takes into account several problematic features often present when analysing multiple spatially interdependent time series. For example, compared with the error correction methodology commonly applied in econometrics, our approach allows simultaneous modeling of multiple interdependent time series avoiding cumbersome statistical testing needed to predetermine the market leader as a point of reference. Furthermore, introducing a flexible spatio-temporal structure enables analysing detailed regional and temporal dynamics of the market mechanisms. Applying the proposed method, we detected spatially asymmetric "price ripples" that spread out from the shock origin. We corroborated the existing literature on the speedier adjustment to emerging price differentials during the famine, but we observed this principally in urban markets. This hastened return to long-run equilibrium means faster and longer travel of price shocks, implying prolonged out-of-equilibrium dynamics, proliferated influence of market shocks, and, importantly, a wider spread of famine conditions.


翻译:我们开发了一个贝叶西亚时空模型,以研究1860年代芬兰饥荒期间工业化前谷物市场一体化情况。我们的模型在分析多种空间相互依存的时间序列时,考虑到经常存在的几个问题。例如,与通常在计量经济学中采用的错误纠正方法相比,我们的方法允许同时模拟多种相互依存的时间序列,避免预先确定市场领导者所需的繁琐统计测试;此外,采用灵活的时空结构,可以分析详细的市场机制区域和时间动态。我们运用了拟议方法,发现了从冲击源传播的空间不对称的“价格波纹”。我们证实了关于饥荒期间对新出现的价格差异作出更迅速调整的现有文献,但我们主要在城市市场观察到这一点。这种快速恢复长期平衡意味着价格冲击的快速和更长的旅程,意味着长期的平衡动态、市场冲击的蔓延影响以及更为广泛的饥荒条件。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年12月20日
Arxiv
0+阅读 · 2021年12月18日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Arxiv
5+阅读 · 2015年9月14日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员