In-situ visual observations of marine organisms is crucial to developing behavioural understandings and their relations to their surrounding ecosystem. Typically, these observations are collected via divers, tags, and remotely-operated or human-piloted vehicles. Recently, however, autonomous underwater vehicles equipped with cameras and embedded computers with GPU capabilities are being developed for a variety of applications, and in particular, can be used to supplement these existing data collection mechanisms where human operation or tags are more difficult. Existing approaches have focused on using fully-supervised tracking methods, but labelled data for many underwater species are severely lacking. Semi-supervised trackers may offer alternative tracking solutions because they require less data than fully-supervised counterparts. However, because there are not existing realistic underwater tracking datasets, the performance of semi-supervised tracking algorithms in the marine domain is not well understood. To better evaluate their performance and utility, in this paper we provide (1) a novel dataset specific to marine animals located at http://warp.whoi.edu/vmat/, (2) an evaluation of state-of-the-art semi-supervised algorithms in the context of underwater animal tracking, and (3) an evaluation of real-world performance through demonstrations using a semi-supervised algorithm on-board an autonomous underwater vehicle to track marine animals in the wild.
翻译:对海洋生物进行现场直观观测对于形成行为理解及其与周围生态系统的关系至关重要,通常,通过潜水器、标签和遥控或人类驾驶的车辆收集这些观测结果,但最近,正在开发装有照相机和内嵌的计算机的自动水下车辆,配备有具有GPU能力的照相机和嵌入计算机,用于各种应用,特别是可以用来补充现有的数据收集机制,因为人类操作或标记比较困难。现有方法侧重于使用完全监督的跟踪方法,但许多水下物种的贴标签数据严重缺乏。半监督跟踪器可能提供替代跟踪解决方案,因为它们需要的数据少于完全监督的对等。然而,由于目前没有现实的水下跟踪数据集,因此人们不太了解海洋领域半监督的跟踪算法的性能。为了更好地评价其性能和效用,我们在本文件中提供了(1) 一套新数据集,具体针对位于http://warp.whouri.edu/vmat/的海洋动物,但许多水下物种的贴标签数据严重缺乏。半监督跟踪跟踪器跟踪器可能提供替代跟踪方法,因为它们所需的数据较少,因为它们需要数据,因为它们比完全监督的对应的对数据较少的数据。然而的对等数据进行评估,但是,因为没有完全监督的对应的对水下水下潜水器进行实地观测算法的评估。(3),在水下潜水器的潜水器进行真正的潜水器进行实际的对水下观测,在水下运行的演算法的对水下运行的运行进行实际的演算法评估。