Large Language Models (LLMs) have experienced a rapid rise in AI, changing a wide range of applications with their advanced capabilities. As these models become increasingly integral to decision-making, the need for thorough interpretability has never been more critical. Mechanistic Interpretability offers a pathway to this understanding by identifying and analyzing specific sub-networks or 'circuits' within these complex systems. A crucial aspect of this approach is Automated Circuit Discovery, which facilitates the study of large models like GPT4 or LLAMA in a feasible manner. In this context, our research evaluates a recent method, Brain-Inspired Modular Training (BIMT), designed to enhance the interpretability of neural networks. We demonstrate how BIMT significantly improves the efficiency and quality of Automated Circuit Discovery, overcoming the limitations of manual methods. Our comparative analysis further reveals that BIMT outperforms existing models in terms of circuit quality, discovery time, and sparsity. Additionally, we provide a comprehensive computational analysis of BIMT, including aspects such as training duration, memory allocation requirements, and inference speed. This study advances the larger objective of creating trustworthy and transparent AI systems in addition to demonstrating how well BIMT works to make neural networks easier to understand.
翻译:暂无翻译