The lack of large-scale real raw image denoising dataset gives rise to challenges on synthesizing realistic raw image noise for training denoising models. However, the real raw image noise is contributed by many noise sources and varies greatly among different sensors. Existing methods are unable to model all noise sources accurately, and building a noise model for each sensor is also laborious. In this paper, we introduce a new perspective to synthesize noise by directly sampling from the sensor's real noise. It inherently generates accurate raw image noise for different camera sensors. Two efficient and generic techniques: pattern-aligned patch sampling and high-bit reconstruction help accurate synthesis of spatial-correlated noise and high-bit noise respectively. We conduct systematic experiments on SIDD and ELD datasets. The results show that (1) our method outperforms existing methods and demonstrates wide generalization on different sensors and lighting conditions. (2) Recent conclusions derived from DNN-based noise modeling methods are actually based on inaccurate noise parameters. The DNN-based methods still cannot outperform physics-based statistical methods.


翻译:缺乏大规模真实的原始图像拆离数据集,在综合现实的原始图像噪音以培训拆离模型方面产生了挑战。然而,真正的原始图像噪音是由许多噪音源促成的,在不同传感器之间差异很大。现有方法无法精确地模拟所有噪音源,为每个传感器建立噪音模型也很困难。在本文中,我们从传感器真实噪音的直接取样中引入了合成噪音的新视角。它必然为不同的照相传感器生成准确的原始图像噪音。两种高效和通用技术:符合模式的补丁取样和高位重建,有助于与空间-孔噪音和高位噪音的精确合成。我们分别对SIDD和ELD数据集进行系统实验。结果显示:(1)我们的方法超越了现有方法和不同传感器和照明条件的广泛概括化。(2)基于DNNN的噪音模型方法最近得出的结论实际上基于不准确的噪音参数。基于DNNN的方法仍然不能超越基于物理的统计方法。

0
下载
关闭预览

相关内容

专知会员服务
53+阅读 · 2020年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月13日
Arxiv
14+阅读 · 2021年6月30日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
4+阅读 · 2020年3月19日
VIP会员
相关VIP内容
专知会员服务
53+阅读 · 2020年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员