Predicting future states or actions of a given system remains a fundamental, yet unsolved challenge of intelligence, especially in the scope of complex and non-deterministic scenarios, such as modeling behavior of humans. Existing approaches provide results under strong assumptions concerning unimodality of future states, or, at best, assuming specific probability distributions that often poorly fit to real-life conditions. In this work we introduce a robust and flexible probabilistic framework that allows to model future predictions with virtually no constrains regarding the modality or underlying probability distribution. To achieve this goal, we leverage a hypernetwork architecture and train a continuous normalizing flow model. The resulting method dubbed RegFlow achieves state-of-the-art results on several benchmark datasets, outperforming competing approaches by a significant margin.
翻译:预测某个系统的未来状态或行动仍然是一项根本性的、但尚未解决的智力挑战,特别是在复杂和非决定性的情景范围,例如人类的模型行为。 现有方法在对未来状态的单一模式的强烈假设下,或在最佳情况下,假设往往不适合实际生活条件的具体概率分布,提供结果。 在这项工作中,我们引入了一个强大和灵活的概率框架,以便能够模拟未来预测,对模式或潜在概率分布几乎没有任何限制。 为了实现这一目标,我们利用一个超网络架构,并训练一个持续正常化的流量模型。 由此形成的方法在几个基准数据集上取得了最先进的结果,大大优于竞争方法。