In this work, we aim to achieve efficient end-to-end learning of driving policies in dynamic multi-agent environments. Predicting and anticipating future events at the object level are critical for making informed driving decisions. We propose an Instance-Aware Predictive Control (IPC) approach, which forecasts interactions between agents as well as future scene structures. We adopt a novel multi-instance event prediction module to estimate the possible interaction among agents in the ego-centric view, conditioned on the selected action sequence of the ego-vehicle. To decide the action at each step, we seek the action sequence that can lead to safe future states based on the prediction module outputs by repeatedly sampling likely action sequences. We design a sequential action sampling strategy to better leverage predicted states on both scene-level and instance-level. Our method establishes a new state of the art in the challenging CARLA multi-agent driving simulation environments without expert demonstration, giving better explainability and sample efficiency.
翻译:在这项工作中,我们的目标是在动态多试剂环境中高效地从端到端学习驱动政策。在目标一级预测和预测未来事件对于做出知情驱动决定至关重要。我们提议了“实事求是预测”预测控制(IPC)方法,该方法预测代理人与未来场景结构之间的相互作用。我们采用了一个新的多端事件预测模块,以自我中心观点估计代理人之间可能的相互作用,以自我驱动车辆的选定动作序列为条件。为了决定每一步的行动,我们通过反复取样可能的动作序列,在预测模块输出的基础上,寻找能够导致未来安全状态的行动序列。我们设计了连续行动取样战略,以更好地利用在现场一级和实例一级预测的状态。我们的方法在具有挑战性的CARLA多剂驱动模拟环境中建立了新的艺术状态,而没有专家演示,提供了更好的解释性和样本效率。