The use of 3D printing, or additive manufacturing, has gained significant attention in recent years due to its potential for revolutionizing traditional manufacturing processes. One key challenge in 3D printing is managing energy consumption, as it directly impacts the cost, efficiency, and sustainability of the process. In this paper, we propose an energy management system that leverages the refinement of manifold model morphing in a flexible grasping space, to reduce costs for biological 3D printing. The manifold model is a mathematical representation of the 3D object to be printed, and the refinement process involves optimizing the morphing parameters of the manifold model to achieve desired printing outcomes. To enable flexibility in the grasping space, we incorporate data-driven approaches, such as machine learning and data augmentation techniques, to enhance the accuracy and robustness of the energy management system. Our proposed system addresses the challenges of limited sample data and complex morphologies of manifold models in layered additive manufacturing. Our method is more applicable for soft robotics and biomechanisms. We evaluate the performance of our system through extensive experiments and demonstrate its effectiveness in predicting and managing energy consumption in 3D printing processes. The results highlight the importance of refining manifold model morphing in the flexible grasping space for achieving energy-efficient 3D printing, contributing to the advancement of green and sustainable manufacturing practices.


翻译:在近年来的制造业领域中,3D打印,也被称为增材制造,因其能够彻底改变传统制造工艺的潜力而受到广泛关注。在3D打印中,管理能源消耗是一个关键挑战,因为它直接影响了工艺的成本、效率和可持续性。本文提出了一种能源管理系统,利用柔性抓取空间中流形模型变形的改进,降低了生物三维打印的成本。流形模型是要打印的3D物体的数学表示,其改进涉及优化流形模型的变形参数,以实现所需的打印结果。为了在抓取空间中实现灵活性,我们采用了机器学习和数据增强技术等数据驱动方法,以增强能源管理系统的准确性和鲁棒性。我们的提出的系统解决了制造过程中样本数据有限和流形模型的复杂形态等挑战。我们的方法更适用于软机器人和生物机制。通过广泛的实验验证,我们评估了我们的系统的性能,并证明了其在预测和管理3D打印过程中能源消耗方面的有效性。结果突显了在柔性抓取空间中改进流形模型变形对于实现节能的3D打印的重要性,为推动绿色和可持续制造实践的进步做出了贡献。

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
13+阅读 · 2022年10月27日
Arxiv
15+阅读 · 2022年1月24日
VIP会员
相关VIP内容
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员