In informational recommenders, many challenges arise from the need to handle the semantic and hierarchical structure between knowledge areas. This work aims to advance towards building a state-aware educational recommendation system that incorporates semantic relatedness between knowledge topics, propagating latent information across semantically related topics. We introduce a novel learner model that exploits this semantic relatedness between knowledge components in learning resources using the Wikipedia link graph, with the aim to better predict learner engagement and latent knowledge in a lifelong learning scenario. In this sense, Semantic TrueLearn builds a humanly intuitive knowledge representation while leveraging Bayesian machine learning to improve the predictive performance of the educational engagement. Our experiments with a large dataset demonstrate that this new semantic version of TrueLearn algorithm achieves statistically significant improvements in terms of predictive performance with a simple extension that adds semantic awareness to the model.
翻译:在信息建议者中,由于需要处理知识领域之间的语义和等级结构,产生了许多挑战。这项工作旨在推动建立一个州意识教育建议系统,其中纳入知识专题之间的语义关系,在与语义相关的专题中传播潜在信息。我们引入了一个新的学习者模型,利用维基百科链接图在学习资源中知识组成部分之间的语义联系,目的是更好地预测学习者的参与和终身学习情景中的潜意识知识。从这个意义上讲,语义真理组织在利用巴伊西亚机器学习提高教育参与的预测性能的同时,构建了一种人性直观的知识代表。我们用一个大数据集进行的实验表明,“真理联盟”算法的新语义版本在预测性表现方面取得了具有统计意义的改进,其简单扩展可以增加模型的语义意识。