In the setting where we ask participants multiple similar possibly subjective multi-choice questions (e.g. Do you like Bulbasaur? Y/N; do you like Squirtle? Y/N), peer prediction aims to design mechanisms that encourage honest feedback without verification. A series of works have successfully designed multi-task peer prediction mechanisms where reporting truthfully is better than any other strategy (dominantly truthful), while they require an infinite number of tasks. A recent work proposes the first multi-task peer prediction mechanism, Determinant Mutual Information (DMI)-Mechanism, where not only is dominantly truthful but also works for a finite number of tasks (practical). However, few works consider how to optimize the multi-task peer prediction mechanisms. In addition to the definition of optimization goal, the biggest challenge is we do not have space for optimization since there is only a single practical and dominantly truthful mechanism. This work addresses this problem by proposing a tractable effort incentive optimization goal and generalizing DMI-Mechanism to a new family of practical, dominantly truthful mechanisms, Volume Mutual Information (VMI)-Mechanisms. We show that DMI-Mechanism may not be optimal. But we can construct a sequence of VMI-Mechanisms that are approximately optimal. The main technical tool is a novel family of mutual information measures, Volume Mutual Information, which generalizes Determinant Mutual Information. We construct VMI by a simple geometric idea: we measure how informative a distribution is by measuring the volume of distributions that is less informative than it (inappropriately, it's similar to measuring how clever a person is by counting the number of people that are less clever than he/she).


翻译:在这样的背景下,我们向参与者提出许多可能相似的主观多选择问题(例如,你喜欢Bulbasaur吗?Y/N;你喜欢Squirtle?Y/N),同侪预测旨在设计鼓励不核实诚实反馈的机制。一系列工作成功地设计了多任务同侪预测机制,其中诚实报告比任何其他战略都好(主要是真实的),同时需要无限的任务。最近的一项工作提出了第一个多任务同侪预测机制,即确定性相互信息(DMI)-机制,其中不仅主要真实,而且用于数量有限(实践性)的任务。然而,很少有人考虑如何优化多任务同侪预测机制,而无需核查。除了优化目标的定义之外,最大的挑战是我们没有空间来优化报告,因为只有一个实用和主要真实的机制。这项工作通过提出一个简单的工作激励目标,将DMI-机制推广到一个实际、主要真实机制的新的大家庭,即相互信息量(VMI)-Me-Mhenalalalalalal 度量度(VMI),这是我们最优级信息的排序工具。我们展示一个最优级工具,这个工具可以用来构建一个最优的MIS。我们最优的顺序。我们可以用来构建一个自我的工具。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
18+阅读 · 2021年5月23日
专知会员服务
77+阅读 · 2021年3月16日
机器学习组合优化
专知会员服务
110+阅读 · 2021年2月16日
TensorFlow 2.0 学习资源汇总
专知会员服务
67+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Imitation by Predicting Observations
Arxiv
4+阅读 · 2021年7月8日
Arxiv
7+阅读 · 2020年6月29日
Learning Discriminative Model Prediction for Tracking
Arxiv
6+阅读 · 2018年3月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
【推荐】直接未来预测:增强学习监督学习
机器学习研究会
6+阅读 · 2017年11月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员