Representing a 3D shape with a set of primitives can aid perception of structure, improve robotic object manipulation, and enable editing, stylization, and compression of 3D shapes. Existing methods either use simple parametric primitives or learn a generative shape space of parts. Both have limitations: parametric primitives lead to coarse approximations, while learned parts offer too little control over the decomposition. We instead propose to decompose shapes using a library of 3D parts provided by the user, giving full control over the choice of parts. The library can contain parts with high-quality geometry that are suitable for a given category, resulting in meaningful decompositions with clean geometry. The type of decomposition can also be controlled through the choice of parts in the library. Our method works via a self-supervised approach that iteratively retrieves parts from the library and refines their placements. We show that this approach gives higher reconstruction accuracy and more desirable decompositions than existing approaches. Additionally, we show how the decomposition can be controlled through the part library by using different part libraries to reconstruct the same shapes.
翻译:以一组原始元素代表 3D 形状可以帮助对结构的感知, 改进机器人物体操作, 并允许编辑、 标准化和压缩 3D 形状。 现有的方法要么使用简单的参数原始元素, 要么学习部件的基因形状空间。 两者都有局限性: 参数原始元素会导致粗略的近似, 而学习到的部件对分解的控制权太小。 我们相反地提议使用用户提供的 3D 部件的图书馆对形状进行分解, 对部件的选择给予充分控制 。 图书馆可以包含适合特定类别的高质量几何学部件, 从而导致清洁几何学的有意义的分解 。 分解类型也可以通过在图书馆中选择部件来控制 。 我们的方法是自我监督的方法, 从图书馆中迭接取部件, 并改进这些部件的位置 。 我们表明, 这种方法比现有方法更能提供更精确的重建和更可取的分解。 此外, 我们展示如何通过不同部分的图书馆来控制分解状态, 通过该部分图书馆来重建相同的形状 。</s>