Learning to solve complex manipulation tasks from visual observations is a dominant challenge for real-world robot learning. Deep reinforcement learning algorithms have recently demonstrated impressive results, although they still require an impractical amount of time-consuming trial-and-error iterations. In this work, we consider the promising alternative paradigm of interactive learning where a human teacher provides feedback to the policy during execution, as opposed to imitation learning where a pre-collected dataset of perfect demonstrations is used. Our proposed CEILing (Corrective and Evaluative Interactive Learning) framework combines both corrective and evaluative feedback from the teacher to train a stochastic policy in an asynchronous manner, and employs a dedicated mechanism to trade off human corrections with the robot's own experience. We present results obtained with our framework in extensive simulation and real-world experiments that demonstrate that CEILing can effectively solve complex robot manipulation tasks directly from raw images in less than one hour of real-world training.


翻译:从视觉观测中学习解决复杂的操作任务是现实世界机器人学习的主要挑战。 深强化学习算法最近显示了令人印象深刻的结果,尽管它们仍然需要大量耗时的试机迭代。 在这项工作中,我们认为交互式学习的有希望的替代模式,即一名教师在执行期间向政策提供反馈,而不是模仿学习,即使用完美演示的预收集数据集。我们提议的校正和评估互动学习框架将教师的纠正和评价反馈结合起来,以不同步的方式培训随机政策,并使用专门机制用机器人本身的经验交换人类的纠正。我们介绍了在广泛的模拟和现实世界实验中与我们的框架取得的结果,这些实验表明,在现实世界培训不到一小时的时间里,CELLing能够直接从原始图像中有效地解决复杂的机器人操作任务。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
88+阅读 · 2020年12月2日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
元学习(meta learning) 最新进展综述论文
专知会员服务
278+阅读 · 2020年5月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2021年5月25日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
spinningup.openai 强化学习资源完整
CreateAMind
6+阅读 · 2018年12月17日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员