Alzheimer's disease (AD) is the main cause of dementia which is accompanied by loss of memory and may lead to severe consequences in peoples' everyday life if not diagnosed on time. Very few works have exploited transformer-based networks and despite the high accuracy achieved, little work has been done in terms of model interpretability. In addition, although Mini-Mental State Exam (MMSE) scores are inextricably linked with the identification of dementia, research works face the task of dementia identification and the task of the prediction of MMSE scores as two separate tasks. In order to address these limitations, we employ several transformer-based models, with BERT achieving the highest accuracy accounting for 87.50%. Concurrently, we propose an interpretable method to detect AD patients based on siamese networks reaching accuracy up to 83.75%. Next, we introduce two multi-task learning models, where the main task refers to the identification of dementia (binary classification), while the auxiliary one corresponds to the identification of the severity of dementia (multiclass classification). Our model obtains accuracy equal to 86.25% on the detection of AD patients in the multi-task learning setting. Finally, we present some new methods to identify the linguistic patterns used by AD patients and non-AD ones, including text statistics, vocabulary uniqueness, word usage, correlations via a detailed linguistic analysis, and explainability techniques (LIME). Findings indicate significant differences in language between AD and non-AD patients.


翻译:阿尔茨海默氏病(AD)是痴呆症的主要原因,伴随着记忆的丧失,如果没有及时诊断,可能会给人们日常生活带来严重后果。很少有作品利用了变压器网络,尽管取得了很高的精确度,但在模型解释能力方面所做的工作却很少。此外,尽管迷你脑状态Exam(MMSE)分数与痴呆症的识别有着密不可分的联系,但研究工作面临着痴呆症识别任务和预测MMSE分数作为两项不同任务的任务。为了解决这些限制,我们采用了几种变压器型模型,BERT实现了87.50%的最高精确度核算。与此同时,我们提出了一种可解释的方法,用以根据Siamemee网络检测AD病人的可解释性达到83.75%。接下来,我们引入了两种多功能学习模式,主要任务涉及确定痴呆症(双元分类),辅助型与确定德敏智得分(多级分类)的严重程度相匹配。我们的模式在检测ADDI病人的非精确性数据中获得了相当于86.25%的精确度,在多功能分析中使用的精确度上,在语言-ADADADLI的精确度上,在最后的统计中发现了一种特殊的不独特的语言分析中,用方法中,用了大量的精确度。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
11+阅读 · 2018年10月17日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员