We present a method to estimate dense depth by optimizing a sparse set of points such that their diffusion into a depth map minimizes a multi-view reprojection error from RGB supervision. We optimize point positions, depths, and weights with respect to the loss by differential splatting that models points as Gaussians with analytic transmittance. Further, we develop an efficient optimization routine that can simultaneously optimize the 50k+ points required for complex scene reconstruction. We validate our routine using ground truth data and show high reconstruction quality. Then, we apply this to light field and wider baseline images via self supervision, and show improvements in both average and outlier error for depth maps diffused from inaccurate sparse points. Finally, we compare qualitative and quantitative results to image processing and deep learning methods.
翻译:我们提出一种方法来估计密集深度,方法是优化一组稀少的点数,以便将其扩散到一份深度图中,最大限度地减少RGB监督的多视反射误差。我们通过将模型的点数以高森为分数,以分析传输方式优化损失的点数、深度和重量。此外,我们开发一种高效的优化常规,既能优化复杂的现场重建所需的50k+点数。我们利用地面真相数据验证我们的例行工作,并显示高重建质量。然后,我们通过自我监督将这一方法应用于光场和更广泛的基线图像,并显示从不准确的稀少点传播的深度地图的平均和外部错误的改进。最后,我们将质量和数量结果与图像处理和深层学习方法进行比较。