This paper focuses on a new problem of estimating human pose and shape from single polarization images. Polarization camera is known to be able to capture the polarization of reflected lights that preserves rich geometric cues of an object surface. Inspired by the recent applications in surface normal reconstruction from polarization images, in this paper, we attempt to estimate human pose and shape from single polarization images by leveraging the polarization-induced geometric cues. A dedicated two-stage pipeline is proposed: given a single polarization image, stage one (Polar2Normal) focuses on the fine detailed human body surface normal estimation; stage two (Polar2Shape) then reconstructs clothed human shape from the polarization image and the estimated surface normal. To empirically validate our approach, a dedicated dataset (PHSPD) is constructed, consisting of over 500K frames with accurate pose and shape annotations. Empirical evaluations on this real-world dataset as well as a synthetic dataset, SURREAL, demonstrate the effectiveness of our approach. It suggests polarization camera as a promising alternative to the more conventional RGB camera for human pose and shape estimation.
翻译:本文侧重于从单一极化图像中估计人类形态和形状的新问题。 极化相机已知能够捕捉反映光的两极分化, 以保存一个物体表面丰富的几何线索。 受最近从极化图像中地面正常重建应用的极化图像的启发, 在本文件中, 我们试图利用极化引发的几何线索从单一极化图像中估计人类形态和形状。 提议了一个专门的两阶段管道: 给一个单一的极化图像, 第一阶段( Polar2Normal) 侧重于细微的人体表面正常估计; 第二阶段( Polar2Shape), 然后从极化图像和估计的表面正常状态中重建有衣着的人类形态。 为了实证地验证我们的方法, 构建了一个专门的数据集, 由500K 框架和 准确的形状和形状说明组成。 对这个真实世界数据集以及合成数据集( SUREL ) 进行实证, 展示我们的方法的有效性。 它建议极化相机作为更传统的 RGB 相机用于人类形态和形状估计的极化相机的一种有希望的替代方法。