Recently, Graph Convolutional Networks (GCNs) have become state-of-the-art algorithms for analyzing non-euclidean graph data. However, it is challenging to realize efficient GCN training, especially on large graphs. The reasons are many-folded: 1) GCN training incurs a substantial memory footprint. Full-batch training on large graphs even requires hundreds to thousands of gigabytes of memory to buffer the intermediate data for back-propagation. 2) GCN training involves both memory-intensive data reduction and computation-intensive features/gradients update operations. Such a heterogeneous nature challenges current CPU/GPU platforms. 3) The irregularity of graphs and the complex training dataflow jointly increase the difficulty of improving a GCN training system's efficiency. This paper presents GCNear, a hybrid architecture to tackle these challenges. Specifically, GCNear adopts a DIMM-based memory system to provide easy-to-scale memory capacity. To match the heterogeneous nature, we categorize GCN training operations as memory-intensive Reduce and computation-intensive Update operations. We then offload Reduce operations to on-DIMM NMEs, making full use of the high aggregated local bandwidth. We adopt a CAE with sufficient computation capacity to process Update operations. We further propose several optimization strategies to deal with the irregularity of GCN tasks and improve GCNear's performance. We also propose a Multi-GCNear system to evaluate the scalability of GCNear.


翻译:最近,图表革命网络(GCN)已成为用于分析非欧元图形数据的最先进的算法,然而,实现高效的GCN培训,特别是在大图表上,具有挑战性,但实现高效的GCN培训,特别是在大图表上,其原因很多:(1) GCN培训产生了大量的记忆足迹;大型图表全批培训甚至需要数百至数千千兆字节的记忆系统来缓冲中间数据以进行回传。(2) GCN培训涉及记忆密集型数据减少和计算密集型特征/梯度更新操作。这种差异性性质对当前的CPU/GPU平台提出了挑战。(3) 图表的不规律性和复杂的培训数据流共同增加了提高GCN培训系统效率的难度。本文介绍了GCNear,这是一个应对这些挑战的混合结构。具体地说,GCNear采用了基于DIMMM的记忆系统来提供容易到规模的记忆能力。为了与混杂性质相匹配,我们将GCN培训行动归类为记忆密集型减少和计算密集型CN更新操作。我们随后在GCN上卸下运行一个高水平的操作到GCN升级的GMMNMA,我们将G的GMAS升级的系统与GM的升级能力与GMCA的升级能力进行一个全面的升级。

0
下载
关闭预览

相关内容

图卷积网络(简称GCN),由Thomas Kpif于2017年在论文Semi-supervised classification with graph convolutional networks中提出。它为图(graph)结构数据的处理提供了一个崭新的思路,将深度学习中常用于图像的卷积神经网络应用到图数据上。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【ICLR2020-】基于记忆的图网络,MEMORY-BASED GRAPH NETWORKS
专知会员服务
108+阅读 · 2020年2月22日
Transformer文本分类代码
专知会员服务
116+阅读 · 2020年2月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Highway Networks For Sentence Classification
哈工大SCIR
4+阅读 · 2017年9月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
13+阅读 · 2021年6月14日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
8+阅读 · 2018年3月20日
Arxiv
10+阅读 · 2018年2月4日
VIP会员
相关VIP内容
【ICLR2020-】基于记忆的图网络,MEMORY-BASED GRAPH NETWORKS
专知会员服务
108+阅读 · 2020年2月22日
Transformer文本分类代码
专知会员服务
116+阅读 · 2020年2月3日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
Highway Networks For Sentence Classification
哈工大SCIR
4+阅读 · 2017年9月30日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员