Toxic comment detection on social media has proven to be essential for content moderation. This paper compares a wide set of different models on a highly skewed multi-label hate speech dataset. We consider inference time and several metrics to measure performance and bias in our comparison. We show that all BERTs have similar performance regardless of the size, optimizations or language used to pre-train the models. RNNs are much faster at inference than any of the BERT. BiLSTM remains a good compromise between performance and inference time. RoBERTa with Focal Loss offers the best performance on biases and AUROC. However, DistilBERT combines both good AUROC and a low inference time. All models are affected by the bias of associating identities. BERT, RNN, and XLNet are less sensitive than the CNN and Compact Convolutional Transformers.
翻译:事实证明,在社交媒体上检测有毒评论对于内容调适至关重要。 本文比较了高度偏斜的多标签仇恨言论数据集上的一系列广泛不同模型。 我们考虑推算时间和若干衡量我们比较中的绩效和偏差的尺度。 我们显示,所有BERT的性能都相似,而不论其大小、优化程度或用于预演模型的语言如何。 RNN比BERT的推论速度快得多。 BILSTM在性能和推论时间之间仍是一个很好的折中。 RoBERTA与Count Loss在偏向和AUROC上表现最佳。 但是, DistiBERT结合了良好的 AUROC和低推论时间。 所有模型都受到关联身份偏见的影响。 BERT、 RNN 和 XLNet 都比CNN 和 Contal Convolutional Trangers的敏感程度要小得多。