Incremental learning aims to enable machine learning models to continuously acquire new knowledge given new classes, while maintaining the knowledge already learned for old classes. Saving a subset of training samples of previously seen classes in the memory and replaying them during new training phases is proven to be an efficient and effective way to fulfil this aim. It is evident that the larger number of exemplars the model inherits the better performance it can achieve. However, finding a trade-off between the model performance and the number of samples to save for each class is still an open problem for replay-based incremental learning and is increasingly desirable for real-life applications. In this paper, we approach this open problem by tapping into a two-step compression approach. The first step is a lossy compression, we propose to encode input images and save their discrete latent representations in the form of codes that are learned using a hierarchical Vector Quantised Variational Autoencoder (VQ-VAE). In the second step, we further compress codes losslessly by learning a hierarchical latent variable model with bits-back asymmetric numeral systems (BB-ANS). To compensate for the information lost in the first step compression, we introduce an Information Back (IB) mechanism that utilizes real exemplars for a contrastive learning loss to regularize the training of a classifier. By maintaining all seen exemplars' representations in the format of `codes', Discrete Representation Replay (DRR) outperforms the state-of-art method on CIFAR-100 by a margin of 4% accuracy with a much less memory cost required for saving samples. Incorporated with IB and saving a small set of old raw exemplars as well, the accuracy of DRR can be further improved by 2% accuracy.


翻译:递增学习的目的是让机器学习模型能够不断获得新课程的新知识,同时保持旧课程已经学到的知识。 保存在记忆中先前看到过的课程的一组培训样本并在新的培训阶段重新播放这些样本被证明是实现这一目标的一个高效和有效的方法。 很明显, 更多模型的Exemplaker继承了它能够取得的更好的业绩。 然而, 找到模型性能与为每个类保存的样本数量之间的权衡, 仍然是重现基于渐进学习的难题, 并且越来越适合现实生活应用。 在本文中, 我们通过采用两步压缩方法来处理这一未解决的问题。 第一步是一次丢失式压缩, 我们提议以代码的形式编码输入图像并保存其离散的潜伏表层。 使用一个等级分级的 VQ- VAEE, 找到模型性能和为每个类保存的样本数量之间的取舍取取量, 我们学习一个等级级潜值模型, 以比重的 D- 数字系统( BB- ANS By) 处理这个开放式的问题。 第一步, 我们建议用一个不那么的 Rest real real real real 格式来校正 IM, IM 格式来补偿一个错误, 一种方法的旧的机 格式, 格式, 格式, 一种方法将一个错误的顺序的缩制成一个错误的缩成一个错误的缩成一个错误的缩成一个错误。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
专知会员服务
54+阅读 · 2019年12月22日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
160+阅读 · 2019年10月12日
已删除
将门创投
3+阅读 · 2019年11月25日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2020年3月26日
Continual Unsupervised Representation Learning
Arxiv
7+阅读 · 2019年10月31日
Arxiv
6+阅读 · 2018年1月29日
VIP会员
相关资讯
已删除
将门创投
3+阅读 · 2019年11月25日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员