Virtual element methods (VEMs) without extrinsic stabilization in arbitrary degree of polynomial are developed for second order elliptic problems, including a nonconforming VEM and a conforming VEM in arbitrary dimension under the mesh assumption that all the faces of each polytope are simplices. The key is to construct local $H({\rm div})$-conforming macro finite element spaces such that the associated $L^2$ projection of the gradient of virtual element functions is computable, and the $L^2$ projector has a uniform lower bound on the gradient of virtual element function spaces in $L^2$ norm. Optimal error estimates are derived for these VEMs. Numerical experiments are provided to test the VEMs without extrinsic stabilization.
翻译:暂无翻译