Hyperparameter optimization (HPO) plays a central role in the automated machine learning (AutoML). It is a challenging task as the response surfaces of hyperparameters are generally unknown, hence essentially a global optimization problem. This paper reformulates HPO as a computer experiment and proposes a novel sequential uniform design (SeqUD) strategy with three-fold advantages: a) the hyperparameter space is adaptively explored with evenly spread design points, without the need of expensive meta-modeling and acquisition optimization; b) the batch-by-batch design points are sequentially generated with parallel processing support; c) a new augmented uniform design algorithm is developed for the efficient real-time generation of follow-up design points. Extensive experiments are conducted on both global optimization tasks and HPO applications. The numerical results show that the proposed SeqUD strategy outperforms benchmark HPO methods, and it can be therefore a promising and competitive alternative to existing AutoML tools.
翻译:超参数优化(HPO)在自动机器学习(Automal)中发挥着核心作用。 这是一项艰巨的任务,因为超参数的反应面一般不为人所知,因此基本上是一个全球优化问题。 本文将HPO改写为计算机实验,并提出了一个新的顺序统一设计(SeqUD)战略,具有三重优势:(a) 超参数空间以平均分布的设计点进行适应性探索,而不需要昂贵的元模型和购置优化;(b) 逐批设计点是依次生成的,同时提供平行的处理支持;(c) 为高效实时生成后续设计点开发新的强化统一设计算法。 在全球优化任务和HPO应用程序上都进行了广泛的实验。 数字结果显示,拟议的SeqUD战略超越了HPO方法的基准,因此它可以成为现有AutML工具的有希望和有竞争力的替代方法。