Physics Informed Neural Network (PINN) is a scientific computing framework used to solve both forward and inverse problems modeled by Partial Differential Equations (PDEs). This paper introduces IDRLnet, a Python toolbox for modeling and solving problems through PINN systematically. IDRLnet constructs the framework for a wide range of PINN algorithms and applications. It provides a structured way to incorporate geometric objects, data sources, artificial neural networks, loss metrics, and optimizers within Python. Furthermore, it provides functionality to solve noisy inverse problems, variational minimization, and integral differential equations. New PINN variants can be integrated into the framework easily. Source code, tutorials, and documentation are available at \url{https://github.com/idrl-lab/idrlnet}.
翻译:物理知情神经网络(PINN)是一个科学的计算框架,用于解决由部分差异等制模型的前瞻性和反面问题,本文介绍IDRLnet,这是一个通过PINN系统进行建模和解决问题的Python工具箱;IDRN为一系列广泛的PINN算法和应用构建了框架;它提供了一种结构化的方法,将几何对象、数据源、人工神经网络、损失度量度和Python内部的优化器纳入其中;此外,它提供了功能,以解决吵闹的反向问题、变异最小化和整体差分方程式;新的PINN变体可以很容易地纳入该框架;源代码、辅导和文件可在以下的 url{https://github.com/idrl-lab/idrnet}查阅。