Deep learning-based surrogate modeling is becoming a promising approach for learning and simulating dynamical systems. Deep-learning methods, however, find very challenging learning stiff dynamics. In this paper, we develop DAE-PINN, the first effective deep-learning framework for learning and simulating the solution trajectories of nonlinear differential-algebraic equations (DAE), which present a form of infinite stiffness and describe, for example, the dynamics of power networks. Our DAE-PINN bases its effectiveness on the synergy between implicit Runge-Kutta time-stepping schemes (designed specifically for solving DAEs) and physics-informed neural networks (PINN) (deep neural networks that we train to satisfy the dynamics of the underlying problem). Furthermore, our framework (i) enforces the neural network to satisfy the DAEs as (approximate) hard constraints using a penalty-based method and (ii) enables simulating DAEs for long-time horizons. We showcase the effectiveness and accuracy of DAE-PINN by learning and simulating the solution trajectories of a three-bus power network.
翻译:深层的基于学习的替代模型正在成为学习和模拟动态系统的一个很有希望的方法。但是,深层的学习方法发现极具挑战性的学习僵硬动态。在本文中,我们开发了DAE-PINN,这是学习和模拟非线性差分位数方程式(DAE)的解决方案轨迹的第一个有效的深层学习框架,它呈现出一种无限的僵硬性,并描述例如电力网络的动态。我们的DAE-PINN以隐含的龙格-库塔时间步骤计划(专门设计用于解决DAEs)和物理知情神经网络(PINN)(我们培训满足根本问题动态的深神经网络)之间的协同效应为基础,我们的框架(一)用基于惩罚的方法执行神经网络,将DAE作为(近似)硬性制约,以及(二)通过学习和模拟三边动力网络的解决方案轨迹来模拟DAE-PINNE。我们通过学习和模拟解决方案轨迹,展示DAE-PINNN的实效和准确性。