We study the edge-weighted online stochastic matching problem. Since Feldman, Mehta, Mirrokni, and Muthukrishnan proposed the $(1-\frac1e)$-competitive Suggested Matching algorithm, there has been no improvement for the general edge-weighted online stochastic matching problem. In this paper, we introduce the first algorithm beating the $1-\frac1e$ barrier in this setting, achieving a competitive ratio of $0.645$. Under the LP proposed by Jaillet and Lu, we design an algorithmic preprocessing, dividing all edges into two classes. Then based on the Suggested Matching algorithm, we adjust the matching strategy to improve the performance on one class in the early stage and on another class in the late stage, while keeping the matching events of different edges highly independent. By balancing them, we finally guarantee the matched probability of every single edge.


翻译:我们研究边权在线随机匹配问题。自从Feldman、Mehta、Mirrokni和Muthukrishnan提出 $(1-\frac1e)$-竞争 Suggested Matching 算法以来,一般边权在线随机匹配问题没有任何改善。在本文中,我们引入了第一个能够超越 $1-\frac1e$ 障碍的算法,在这种情况下实现了一个竞争比率为 $0.645$。基于Jaillet和Lu提出的 LP,我们设计了一个算法预处理,将所有的边分成两类。然后基于 Suggested Matching 算法,我们调整了匹配策略,以在早期阶段提高一类边的性能,在后期阶段提高另一类边的性能,同时保持不同边缘匹配事件之间高度独立。通过平衡它们,我们最终保证了每个单独边的匹配概率。

0
下载
关闭预览

相关内容

机器学习组合优化
专知会员服务
108+阅读 · 2021年2月16日
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
50+阅读 · 2020年12月14日
【电子书推荐】Data Science with Python and Dask
专知会员服务
43+阅读 · 2019年6月1日
代码推荐 | 轻松实现各种图匹配 Graph matching.
图与推荐
2+阅读 · 2022年10月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年5月25日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
0+阅读 · 2023年5月24日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员