To simulate the dynamics of fluid with polydisperse particles on macroscale level, one has to solve hydrodynamic equations with several relaxation terms, representing momentum transfer from fluid to particles and vice versa. For small particles, velocity relaxation time (stopping time) can be much shorter than dynamical time of fluid \textcolor{red}{that makes} this problem stiff and thus computationally expensive. We present a new fast method for computing several stiff drag terms in two-phase polydisperse medium with Smoothed Particle Hydrodynamics (SPH). In our implementation, fluid and every fraction of dispersed phase are simulated with different sets of particles. The method is based on (1) linear interpolation of velocity values in drag terms, (2) implicit approximation of drag terms that conserves momentum with machine precision\textcolor{red}{,} and (3) solution of system of $N$ linear algebraic equations with $O(N^2)$ arithmetic operation instead of $O(N^3)$. We studied the properties of the proposed method on one-dimensional problems with known solutions. We found that we can obtain acceptable accuracy of the results with numerical resolution independent of short stopping time values. All simulation results discussed in the paper are obtained with \textcolor{red}{open source} software.


翻译:模拟液流的动态, 在宏观水平上模拟多散粒子的动态, 必须用若干放松条件解决流体动力等方程式, 代表从流体到粒子的动力转移, 反之亦然。 对于小粒子, 速度放松时间( 停止时间) 可能比流体的动态时间短得多, 使这个问题非常严重, 因而计算成本昂贵 。 我们用平滑的粒子流体动力学( SPH), 在两阶段多散体介质介质( SPH) 计算若干硬性拖值的新方法。 在我们的实施过程中, 流体和分散阶段的每一部分都用不同的粒子进行模拟 。 这个方法基于 (1) 以拖速值进行线性线性线性间间间推, (2) 以机器精度\ textcol{ red{ } 和 (3) 以$NO( N ⁇ 2) 美元算算术操作的系统, 而不是 $O( N ⁇ 3) 美元。 我们用已知的解决方案研究了拟议方法的特性。 我们发现, 可以用已知的一维问题来获得结果的可接受性精确性结果, 以数字解 停止 软件的所有 格式 。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
The Boundary Element Method of Peridynamics
Arxiv
0+阅读 · 2021年5月31日
Arxiv
0+阅读 · 2021年5月31日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
随波逐流:Similarity-Adaptive and Discrete Optimization
我爱读PAMI
5+阅读 · 2018年2月6日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员