The paper addresses a two-temperature model for simulating compressible two-phase flow taking into account diffusion processes related to the heat conduction and viscosity of the phases. This model is reduced from the two-phase Baer-Nunziato model in the limit of complete velocity relaxation and consists of the phase mass and energy balance equations, the mixture momentum equation, and a transport equation for the volume fraction.Terms describing effects of mechanical relaxation, temperature relaxation, and thermal conduction on volume fraction evolution are derived and demonstrated to be significant for heat conduction problems. The thermal conduction leads to instantaneous thermal relaxation so that the temperature equilibrium is always maintained in the interface region with meeting the entropy relations. A numerical method is developed to solve the model governing equations that ensures the pressure-velocity-temperature (PVT) equilibrium condition in its high-order extension. We solve the hyperbolic part of the governing equations with the Godunov method with the HLLC approximate Riemann solver. The non-linear parabolic part is solved with an efficient Chebyshev explicit iterative method without dealing with large sparse matrices. To verify the model and numerical methods proposed,we demonstrate numerical results of several numerical tests such as the multiphase shock tube problem, the multiphase impact problem, and the planar ablative Rayleigh-Taylor instability problem.
翻译:本文论述模拟压缩两阶段流的双温模型,其中考虑到与热导和各个阶段的粘度有关的扩散过程。该模型在完全速度放松的限度内从两阶段Baer-Nunziato模型从全速放松范围内从两阶段Baer-Nunziato模型缩小,由阶段质量和能量平衡方程式、混合动力方程式和体积分数的运输方程组成。根据HLLLC近似Riemann解答器,得出并证明描述机械放松、温度放松和体积分解对热导问题的影响的术语。热导导导致即时热导放松,使温度平衡总是在界面区域保持,满足英特普关系。开发了一种数字方法,用以解决调方程式的模型,确保其高压-速度平衡条件、混合动力方程式等的平衡条件。我们用Godunov方法解决了管理方程式的超单方程式部分,该方程式对于热导问题意义重大。非线反向部分通过高效的Chebyv明确代平方方法解决温度平衡问题,使界面的温度平衡始终维持在满足连接关系,从而满足连接关系,满足通关关系,满足通关关系,满足通关关系关系关系。开发多个方程式,在高压平面图的平面图,不与高频平面图,不要求,不以数字平的平,不以数字平的平的平面图,不进行数平面图,不进行数平面试验,不进行。