Sampling the parameters of high-dimensional Continuous Time Markov Chains (CTMC) is a challenging problem with important applications in many fields of applied statistics. In this work a recently proposed type of non-reversible rejection-free Markov Chain Monte Carlo (MCMC) sampler, the Bouncy Particle Sampler (BPS), is brought to bear to this problem. BPS has demonstrated its favorable computational efficiency compared with state-of-the-art MCMC algorithms, however to date applications to real-data scenario were scarce. An important aspect of the practical implementation of BPS is the simulation of event times. Default implementations use conservative thinning bounds. Such bounds can slow down the algorithm and limit the computational performance. Our paper develops an algorithm with an exact analytical solution to the random event times in the context of CTMCs. Our local version of BPS algorithm takes advantage of the sparse structure in the target factor graph and we also provide a framework for assessing the computational complexity of local BPS algorithms.
翻译:取样高维连续时间标记链(CTMC)的参数是一个具有挑战性的问题,许多应用统计领域都有重要的应用。在这项工作中,最近提出的一种不可逆拒绝的马可夫链-蒙特卡洛(MCMC)取样器(BPS),即 " 宽度粒子取样器 " (BPS),将引发这一问题。BPS已经表明,与最先进的MCMC算法相比,它具有有利的计算效率,但迄今为止,对真实数据假设的应用却很少。BPS的实际实施的一个重要方面是模拟事件时间。默认执行过程使用保守的稀释界限。这种界限可以减缓算法,限制计算性性能。我们的论文开发一种算法,对CTMC中随机事件的时间有一个精确的分析解决办法。我们本地版的BPS算法利用了目标要素图中稀疏的结构,我们还为评估当地BPS算法的计算复杂性提供了一个框架。