This paper presents and discusses an implementation of a multiple target tracking method, which is able to deal with target interactions and prevent tracker failures due to hijacking. The referenced approach uses a Markov Chain Monte Carlo (MCMC) sampling step to evaluate the filter and constructs an efficient proposal density to generate new samples. This density integrates target interaction terms based on Markov Random Fields (MRFs) generated per time step. The MRFs model the interactions between targets in an attempt to reduce tracking ambiguity that typical particle filters suffer from when tracking multiple targets. A test sequence of 662 grayscale frames containing 20 interacting ants in a confined space was used to test both the proposed approach and a set of importance sampling based independent particle filters, to establish a performance comparison. It is shown that the implemented approach of modeling target interactions using MRF successfully corrects many of the tracking errors made by the independent, interaction unaware, particle filters.
翻译:本文件介绍并讨论了多目标跟踪方法的实施情况,该方法能够处理目标互动,防止跟踪器因劫持而发生故障。参考方法使用Markov链蒙特卡洛(MCMC)取样步骤来评估过滤器,并构建高效的建议密度以生成新样本。该密度结合了基于每次时间步骤生成的Markov随机场的目标互动条件。管理成果框架模拟目标之间的相互作用,以减少跟踪多个目标时典型粒子过滤器所遭遇的模糊性。在封闭空间中,使用包含20个互动蚂蚁的662个灰度框架的测试序列测试拟议方法和一套基于独立粒子过滤器的重要取样方法,以建立性能比较。据显示,使用管理成果框架构建目标互动模型的方法成功地纠正了独立、不知情的粒子过滤器造成的许多跟踪错误。