This paper explores human behavior in virtual networked communities, specifically individuals or groups' potential and expressive capacity to respond to internal and external stimuli, with assortative matching as a typical example. A modeling approach based on Multi-Agent Reinforcement Learning (MARL) is proposed, adding a multi-head attention function to the A3C algorithm to enhance learning effectiveness. This approach simulates human behavior in certain scenarios through various environmental parameter settings and agent action strategies. In our experiment, reinforcement learning is employed to serve specific agents that learn from environment status and competitor behaviors, optimizing strategies to achieve better results. The simulation includes individual and group levels, displaying possible paths to forming competitive advantages. This modeling approach provides a means for further analysis of the evolutionary dynamics of human behavior, communities, and organizations in various socioeconomic issues.
翻译:本文件探讨虚拟网络社区中的人类行为,特别是个人或团体的潜力和反应内部和外部刺激的表达能力,以各种匹配为典型例子;提议采用基于多代理强化学习(MARL)的建模方法,对A3C算法增加一个多头关注功能,以提高学习效率;这一方法通过各种环境参数设置和代理行动战略模拟某些情景中的人类行为;在我们的实验中,强化学习被用来为从环境状况和竞争者行为中学习的具体代理人服务,优化战略以取得更好的结果;模拟包括个人和团体级别,展示形成竞争优势的可能途径;这一建模方法为进一步分析人类行为、社区和组织在各种社会经济问题上的进化动态提供了手段。