Face attribute evaluation plays an important role in video surveillance and face analysis. Although methods based on convolution neural networks have made great progress, they inevitably only deal with one local neighborhood with convolutions at a time. Besides, existing methods mostly regard face attribute evaluation as the individual multi-label classification task, ignoring the inherent relationship between semantic attributes and face identity information. In this paper, we propose a novel \textbf{trans}former-based representation for \textbf{f}ace \textbf{a}ttribute evaluation method (\textbf{TransFA}), which could effectively enhance the attribute discriminative representation learning in the context of attention mechanism. The multiple branches transformer is employed to explore the inter-correlation between different attributes in similar semantic regions for attribute feature learning. Specially, the hierarchical identity-constraint attribute loss is designed to train the end-to-end architecture, which could further integrate face identity discriminative information to boost performance. Experimental results on multiple face attribute benchmarks demonstrate that the proposed TransFA achieves superior performances compared with state-of-the-art methods.


翻译:在视频监视和面貌分析中,面貌属性评价起着重要作用。 虽然基于神经网络的共变方法取得了巨大进步, 但它们不可避免地只能同时处理一个局部社区。 此外, 现有方法大多将面貌属性评价视为个体多标签分类任务, 忽视语义属性和面貌身份信息之间的内在关系 。 在本文中, 我们为\ textbf{ f} ace \ textbf{ a} a} textbf{ a}tritte 评估方法(\ textbf{transFA}) 提出了一个新的 \ textb{transFA}, 这种方法可以有效加强关注机制中的分化代表性学习。 多分支变换器用于探索类似语义区域不同属性属性属性属性属性学习属性之间的一致性。 特别地, 等级身份- 约束属性损失旨在培训端对端结构, 从而进一步整合面身份歧视信息以提升性能。 多重面貌属性基准的实验结果显示, 拟议的 TransFA 实现了与状态方法相比的优异性表现。

0
下载
关闭预览

相关内容

Meta最新WWW2022《联邦计算导论》教程,附77页ppt
专知会员服务
59+阅读 · 2022年5月5日
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
VIP会员
相关资讯
相关基金
Top
微信扫码咨询专知VIP会员