We propose a general framework for obtaining probabilistic solutions to PDE-based inverse problems. Bayesian methods are attractive for uncertainty quantification, but assume knowledge of the likelihood model or data generation process. This assumption is difficult to justify in many inverse problems, in which the random map from the parameters to the data is complex and nonlinear. We adopt a Gibbs posterior framework that directly posits a regularized variational problem on the space of probability distributions of the parameter. The minimizing solution generalizes the Bayes posterior and is robust to misspecification or lack of knowledge of the generative model. We provide cross-validation procedures to set the regularization hyperparameter in our inference framework. A practical and computational advantage of our framework is that its implementation draws on existing tools in Bayesian computational statistics. We illustrate the utility of our framework via a simulated example, motivated by dispersion-based wave models used to characterize artertial vessels in ultrasound vibrometry.
翻译:我们提出一个总框架,用于为基于PDE的反问题获取概率解决方案。贝叶斯方法对不确定性的量化具有吸引力,但假定对概率模型或数据生成过程的了解。这一假设在许多反向问题中难以说明理由,因为从参数到数据随机地图复杂而非线性。我们采用了Gibbs后方框架,直接假设参数概率分布空间的常规变异问题。最小化解决方案对Bayes后方模型十分笼统,并且对于基因模型的错误区分或缺乏知识十分有力。我们提供了交叉验证程序,以便在我们的推论框架中设置正规化超参数。我们框架的一个实际和计算优势是,其实施利用了巴伊西亚计算统计数据中的现有工具。我们通过一个模拟例子来说明我们框架的效用,其动机是用于在超声波比分辨中测定产物容器特征的分散波模型。