Treatment specific survival curves are an important tool to illustrate the treatment effect in studies with time-to-event outcomes. In non-randomized studies, unadjusted estimates can lead to biased depictions due to confounding. Multiple methods to adjust survival curves for confounders exist. However, it is currently unclear which method is the most appropriate in which situation. Our goal is to compare forms of Inverse Probability of Treatment Weighting, the G-Formula, Propensity Score Matching, Empirical Likelihood Estimation and augmented estimators as well as their pseudo-values based counterparts in different scenarios with a focus on their bias and goodness-of-fit. We provide a short review of all methods and illustrate their usage by contrasting the survival of smokers and non-smokers, using data from the German Epidemiological Trial on Ankle-Brachial-Index. Subsequently, we compare the methods using a Monte-Carlo simulation. We consider scenarios in which correctly or incorrectly specified models for describing the treatment assignment and the time-to-event outcome are used with varying sample sizes. The bias and goodness-of-fit is determined by taking the entire survival curve into account. When used properly, all methods showed no systematic bias in medium to large samples. Cox regression based methods, however, showed systematic bias in small samples. The goodness-of-fit varied greatly between different methods and scenarios. Methods utilizing an outcome model were more efficient than other techniques, while augmented estimators using an additional treatment assignment model were unbiased when either model was correct with a goodness-of-fit comparable to other methods. These doubly-robust methods have important advantages in every considered scenario.


翻译:在非随机研究中,未经调整的估计数可能导致偏差的描述,其重点是其偏差和优美。我们对所有方法进行简短审查,并用对比吸烟者和非吸烟者生存情况的方法来说明其使用情况,目前还不清楚在何种情况下最适宜。我们的目标是用安克-布拉西亚-Index的德国流行病学试验数据比较治疗加权、G-Formula、Propentisity评分比对齐、Eppericalal Lishood Estimation和增加估测器及其在不同情景中以伪值为基础的对应方,重点是其偏向性和适得其美。我们的目标是比较使用安克-布拉西亚-Index的德国流行病学试验、G-Formetical-Breachial-Index的反向概率。随后,我们比较模型使用蒙特-Carloo模拟的方法,我们考虑了在描述治疗任务和时间-evident-evident结果时使用正确或错误的模型,我们考虑了各种方法,在评估结果中采用较优的公式时,但采用较优的计算方法则使用较优的精确的计算方法。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年1月11日
Arxiv
11+阅读 · 2022年9月1日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员