We revisit the problem of estimating the local average treatment effect (LATE) and the local average treatment effect on the treated (LATT) when control variables are available, either to render the instrumental variable (IV) suitably exogenous or to improve precision. Unlike previous approaches, our doubly robust (DR) estimation procedures use quasi-likelihood methods weighted by the inverse of the IV propensity score - so-called inverse probability weighted regression adjustment (IPWRA) estimators. By properly choosing models for the propensity score and outcome models, fitted values are ensured to be in the logical range determined by the response variable, producing DR estimators of LATE and LATT with appealing small sample properties. Inference is relatively straightforward both analytically and using the nonparametric bootstrap. Our DR LATE and DR LATT estimators work well in simulations. We also propose a DR version of the Hausman test that can be used to assess the unconfoundedness assumption through a comparison of different estimates of the average treatment effect on the treated (ATT) under one-sided noncompliance. Unlike the usual test that compares OLS and IV estimates, this procedure is robust to treatment effect heterogeneity.
翻译:我们重新审视了在有控制变量时估计当地平均治疗效果(LATE)和当地平均治疗效果(LATT)对治疗(LATT)的预测问题,或者使工具变量(IV)具有适当的外源性,或者提高精确度。与以往的做法不同,我们双强(DR)估算程序使用准相似性方法,根据四分偏差的逆差加权回归调整(IPWRA)测量器进行加权。通过适当选择偏差分和结果模型模型模型的模型,确保匹配值在反应变量确定的逻辑范围内,产生LATE和LATT的DR估计器,具有吸引小样本特性。推论在分析上和使用非对称靴装置方面相对直截了当。我们的DRLATE和DLATT的估测器在模拟中效果良好。我们还提出了Hausman测试的DR版本,该版本可用于通过比较对受治疗者的平均治疗效果的不同估计值来评估不合理性假设。不同于常规的检验方法,将OLS和IV的精确性测算法。