Owing to uncertainties in both kinematics and dynamics, the current trajectory tracking framework for mobile robots like spherical robots cannot function effectively on multiple terrains, especially uneven and unknown ones. Since this is a prerequisite for robots to execute tasks in the wild, we enhance our previous hierarchical trajectory tracking framework to handle this issue. First, a modified adaptive RBF neural network (RBFNN) is proposed to represent all uncertainties in kinodynamics. Then the Lyapunov function is utilized to design its adaptive law, and a variable step-size algorithm is employed in the weights update procedure to accelerate convergence and improve stability. Hence, a new adaptive model prediction control-based instruction planner (VAN-MPC) is proposed. Without modifying the bottom controllers, we finally develop the multi-terrain trajectory tracking framework by employing the new instruction planner VAN-MPC. The practical experiments demonstrate its effectiveness and robustness.
翻译:由于在运动学和动力学方面存在的不确定性,目前移动机器人(如球形机器人)的轨迹跟踪框架在多个地形,尤其是不平坦和未知的地形上无法有效运行。鉴于这是机器人在野外执行任务的前提条件,我们加强了我们之前的分层轨迹跟踪框架以处理这个问题。首先,提出了改进的自适应径向基函数神经网络(RBFNN)来表示运动学和动力学中的所有不确定性。然后利用李亚普诺夫函数设计其自适应定律,并在权重更新过程中采用可变步长算法来加速收敛并提高稳定性。因此,提出了一种新的基于自适应模型预测控制的指令规划器(VAN-MPC)。最后,利用新的指令规划器VAN-MPC开发多地形轨迹跟踪框架,而无需修改底层控制器。实际实验证明了其效果和鲁棒性。