Modern keyboards allow a musician to play multiple instruments at the same time by assigning zones -- fixed pitch ranges of the keyboard -- to different instruments. In this paper, we aim to further extend this idea and examine the feasibility of automatic instrumentation -- dynamically assigning instruments to notes in solo music during performance. In addition to the online, real-time-capable setting for performative use cases, automatic instrumentation can also find applications in assistive composing tools in an offline setting. Due to the lack of paired data of original solo music and their full arrangements, we approach automatic instrumentation by learning to separate parts (e.g., voices, instruments and tracks) from their mixture in symbolic multitrack music, assuming that the mixture is to be played on a keyboard. We frame the task of part separation as a sequential multi-class classification problem and adopt machine learning to map sequences of notes into sequences of part labels. To examine the effectiveness of our proposed models, we conduct a comprehensive empirical evaluation over four diverse datasets of different genres and ensembles -- Bach chorales, string quartets, game music and pop music. Our experiments show that the proposed models outperform various baselines. We also demonstrate the potential for our proposed models to produce alternative convincing instrumentations for an existing arrangement by separating its mixture into parts. All source code and audio samples can be found at https://salu133445.github.io/arranger/ .
翻译:现代键盘允许音乐家同时播放多种乐器, 指定区域 -- -- 键盘固定的音频范围 -- -- 给不同的乐器。 在本文中, 我们打算进一步扩展这个想法, 并研究自动仪表的可行性 -- -- 动态地分配乐团的音符, 在表演期间将乐器分配给独奏音乐中的音符。 除了在线的、 实时的、 实时的、 功能性使用案例设置之外, 自动仪表还可以在离线设置中找到辅助性组装工具的应用。 由于缺乏原始独奏音乐及其全面安排的配对数据, 我们通过学习, 以象征性音乐的混合部分( 例如声音、 音频、 乐器和音轨) 与它们的混合部分( 例如, 声音、 乐器和音轨) 进行自动仪表, 假设该混合物将在一个键盘上播放。 我们将部分的分解任务设置为顺序的多级分类, 并采用机器学习方式将笔记的顺序绘制成部件的顺序。 为了检查我们提议的模型的有效性, 我们对四种不同类型和方格- Bachperperal coles、 start code、 cules、 cules、 游戏游戏和制式的游戏和制式的模型将展示我们提出的各种的变式的模型, 展示现有的的模型, 和制式的模型, 并展示所有的变式模型, 并展示我们现有的的变式的模型, 和制制成的变式的模型, 。