Traditional multiple object tracking methods divide the task into two parts: affinity learning and data association. The separation of the task requires to define a hand-crafted training goal in affinity learning stage and a hand-crafted cost function of data association stage, which prevents the tracking goals from learning directly from the feature. In this paper, we present a new multiple object tracking (MOT) framework with data-driven association method, named as Tracklet Association Tracker (TAT). The framework aims at gluing feature learning and data association into a unity by a bi-level optimization formulation so that the association results can be directly learned from features. To boost the performance, we also adopt the popular hierarchical association and perform the necessary alignment and selection of raw detection responses. Our model trains over 20X faster than a similar approach, and achieves the state-of-the-art performance on both MOT2016 and MOT2017 benchmarks.
翻译:传统的多物体跟踪方法将任务分为两部分:亲系学习和数据协会。任务分离要求确定亲系学习阶段的手工制作培训目标和数据协会阶段的手工制作成本功能,使跟踪目标无法直接从特征中学习。在本文中,我们提出了一个新的多物体跟踪框架,采用数据驱动联系方法,称为跟踪协会跟踪器(TAT),目的是通过双级优化方案将特征学习和数据联系整合为一体,以便从特征中直接学习协会成果。为了提高绩效,我们还采用流行的等级协会,对原始检测反应进行必要的调整和选择。我们的模型比类似方法培训快20x以上,并在MOT2016和MOT2017基准上实现最新业绩。