This paper presents a method for the robust selection of measurements in a simultaneous localization and mapping (SLAM) framework. Existing methods check consistency or compatibility on a pairwise basis, however many measurement types are not sufficiently constrained in a pairwise scenario to determine if either measurement is inconsistent with the other. This paper presents group-$k$ consistency maximization (G$k$CM) that estimates the largest set of measurements that is internally group-$k$ consistent. Solving for the largest set of group-$k$ consistent measurements can be formulated as an instance of the maximum clique problem on generalized graphs and can be solved by adapting current methods. This paper evaluates the performance of G$k$CM using simulated data and compares it to pairwise consistency maximization (PCM) presented in previous work.
翻译:本文件介绍了在同时进行本地化和绘图(SLAM)框架内可靠选择测量的方法; 现有方法在对称基础上检查一致性或兼容性,但许多计量类型在对称假设中并没有充分限制,无法确定这两种计量是否与另一种不一致; 本文件介绍了一组-k$一致性最大化(G$kmCM),以估算内部最大一组-k美元一致的计量(Gg$k$CM); 最大一组-k$一致测量的溶解可以作为通用图表中最大组别问题的一个例子,可以通过调整现有方法加以解决; 本文件利用模拟数据评估G$kmmCM的绩效,并将其与以往工作提出的对齐一致性最大化(PCM)进行比较。